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Abstract. We SNdy the knot probability of polygons confined to slabs or prisms, considered as 
subsets of the simple cubic lattice. We show rigorously that almost all sufficiently long polmons 
in a slab are bolted and we use Monte Carlo methods to investigate the behaviour of the knot 
probability as a function of the width of the slab or prism and the number of edges in the 
polygon. In addition we consider the effect of solvent q u a i  on the knot probability in these 
confined geomuies. 

1. Introciuetion 

Knots in closed polymer chains are of interest in polymer physics, chemistry, molecular 
biology and knot theory, and knotting can have an important influence on a number 
of polymer properties. For instance, the effects of knots on the rheology of polymer 
networks were investigated by Edwards (1967, 1968), and de Gennes (1984) considered 
tight knots in polymers md the effect which they have on long-time memory effects in 
melts of crystallizable linear polymers. In addition, the presence of knots in closed circular 
DNA can give information about the mechanism of action of enzymes acting on the DNA 
molecules (Wasserman et al 1985, Wasserman and C o z m l l i  1986). In this context knots 
have been detected in circular DNA, their knot type identified by electron microscopy (Dean 
and Cozzarelli 1985, Wasserman and Cozzarelli 1991). and the knot probability measured 
experimentally as a function of the degree of polymerization and the ionic strength (Shaw 
and Wang 1993). 

Ring polymers (such as closed circular DNA) can be modelled as n-step self-avoiding 
polygons on a regular lattice, and the presence of knots in polygons (and in related models, 
such as polygons in R3)  has been studied using Monte. Carlo methods by a number of workers 
(Vologodskii er a1 1974, Michels and Wiegel 1986, Janse van Rensburg and Whittington 
1990, Koniaris and Muthilkumar 1991). Little is known rigorously, but it has been shown 
that sufficiently long polygons are knotted with probability one (Sumners and Whittington 
1988, Pippenger 1989). These rigorous results have been successively extended to the more 
general case of graphs embedded in Z3 (Soteros et a1 1992) and to the problem of the 
entanglement complexity of self-avoiding walks (Janse van Rensburg et al 1992). 

Polymers are often confined to restricted spaces: for instance the presence of histones 
ana other large molecules in the cell-nucleus confines the cellular DNA to reduced spaces, 
with corresponding effects on the geometrical and topo~ogicd properties of the DNA. In this 
paper we consider the effects of such geometrical constraints on the knot probability of 
ring polymers modelled by polygons in the cubic lattice, in the specific cases where the 
polygons are confined to a slab or to a prism. (The only previous work in this area, as far 
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as we know, is a paper by Micbels and Wiegel (1989) in which they model ring polymers 
in a thin slab as closed curves in RZ in which the intersections are chosen randomly to be 
under- or over-crossings. They find that the knot probability is higher than for polygons 
in R3.) In section 2 we present some rigorous results; in particular, we investigate the 
n-dependence of the knot probability for polygons confined to a slab of the simple cubic 
lattice. In section 3 we explain the implementation of a Monte Carlo program to simulate 
polygons in the cubic lattice, and we explore the possibility of using rejection techniques 
to extract data on the properties of polygons confined to slabs and prisms. We present and 
discuss the results of some simulations in section 4 and give some brief conclusions and 
suggestions for future work in section 5. 

2. Rigorous results 

An n-step walk is an ordered sequence o0,01. oz, . . . ,on of points of 23 such that 
successive points are unit distance apart; it is an n-step self-avoiding walk (which we 
shall abbreviate to an n-SAW) if these n + 1 points are all distinct. We call the points 
00.01, . . . , on the vertices of the walk, and we consider two walks to be equivalent if one 
is a translate of the other. One is often interested in the properties of n-SAWS to within 
equivalence, and in this case it is convenient to consider the walks with the first vertex at 
the origin and to write c. for the number of such walks. 

An n-step self-avoiding circuit is an (n - 1)-SAW whose first and last vertices 00 and 
on-[ are unit distance apart. If WO, w1, @, . . . , o,-l are the successive vertices of an n- 
step self-avoiding circuit, then any cyclic permutation or reflection of a cyclic permutation 
of the vertices is also an n-step self-avoiding circuit. The equivalence class of 2n n-step 
self-avoiding circuits may be regarded as a single (unlabelled) geometrical object which we 
call an n-step self-avoiding polygon or simply an n-SAp. Two polygons are equivalent if 
one is a translate of the other, and we write p,, for the number of inequivalent n-SAPS. An 
n-SAP is said to be rooted if it contains one labelled vertex which coincides with the origin 
and, since the root can be chosen in n ways, the number of distinct rooted n-SAPs is np,,. 
In what follows, we shall use the term polygon to denote either n-sAps or rooted n-SAPS. 

Hammersley (1961) bas shown that there exists a connective constant K > 0 such that 

(2.1) 

and similar techniques, together with the use of a pattern theorem (Kesten 1963), have 
been used (Sumners and Whittington 1988, Pippenger 1989) to prove that the number p: 
of unknorted polygons behaves as 

- eu"+o(n) n -  

with 0 < KO < K ,  so that the probability P(n)  that the polygon is a knot goes to unity 
exponentially rapidly as 

for some positive constant a0 = K - KO. One concludes that unknotted polygons comprise 
an exponentially small fraction of all polygons as n tends to infinity. Similar results are 
valid for various continuum versions of piecewise linear embeddings of circles in R3 @iao 
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1990, Diao et ai 1993). For related results see also Frisch and Klempner (1970) and Kendall 
(1979). 

In this paper we shall be concerned with knotting of polygons confined to certain subsets 
of the simple cubic lattice 2'. We define an Lsiub as the section graph of Z3 whose vertex 
set is the set of vertices of Z3 with z-coordinate in the range 0 < z Q L,  and whose edge 
set is the set of edges of Z3 incident on two of these vertices. Similarly an (L1 , Lz)-prism 
is the section graph of Z3 with vertices having y and z coordinates satisfying 0 < y < LI 
and 0 < z Q Lz. and with the edges of Z3 which are incident on two of these vertices. 
Let c,(L) be the number of self-avoiding walks, in an L-slab, with n edges and first vertex 
rooted at the origin. Similarly, let p,(L) be the number of (unrooted) polygons confined 
to an L-slab. We regard two polygons as distinct if they can not be superimposed by 
translation in the x or y directions. We can now prove the analogous result to (2.3) for 
polygons confined to an L-slab. In order to do this, we note the following lemma. 

Lemma 2.1 (Hammersley and Whittington 1985). If c,(L) is the number of n-step self- 
avoiding walks in an L-slab, the limit 

hl f l- l  lOgC,(L) = K ( L )  (2.4) n-m 

exists for all L. Moreover, K ( L )  is skictly monotonically increasing in L and 
liimL,,~(L) = K .  

We next need to generalize the pattern theorem for walks (Kesten 1963) to walks 
confined in an L-slab. A Kesten pattern K is a finite self-avoiding walk such that 
there exists a self-avoiding walk which contains three copies of K .  For any 01 > 0 
and @ > 0, define a K,J pattem to be any self-avoiding walk w such that at least 
three disjoint copies of w occur on 'Some self-avoiding walk UP, where one endpoint of 
W* is the origin, and the other is (01, @,O). In addition, o* is completely contained in 
D.,a = ( ( x ,  y ,  z) E Z3 : 0 < x < 01, 0 < y < ,S, 0 < z < L). Then we have the following 
lemma. 

Lemma 2.2. For any 01 > 0 and @ > 0, let P be a K,,p pattern, then 

limsupn-' logc.(P, L )  = K ( F ,  L )  < K ( L )  (2.5) 
n+m 

where c,(p, L )  is the number of n-step walks in an L-slab which do not contain the 
pattern P. 

The proof of this lemma is similar to the case for walks in a prism (Soteros and 

Walks and polygons have the same connective constant, and this is also true when they 
Whittington 1989), and we omit the details. 

are confined to an L-slab; indeed the following lemma holds. 

Lemma 2.3 (Madras and Slade 1993, p 270). If p,(L)  is the number of unrooted polygons 
in an L-slab then 

lim n-' logp,(L) = K(L) .  (2.6) 
n - t m  

Since deleting an edge cannot create a pattern we have 

P"@, L )  < C n - 1 ( F ,  L )  (2.7) 

which, together with (2.5) and (U), establishes the following lemma. 
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Lemma 2.4. If there exists a self-avoiding walk in an L-slab on which a Kesten pattern P 
occurs then the number of polygons in an L-slab on which P never o m s  is such that 

Lemma 2.4 implies that polygons in an L-slab which do not contain a given pattern P 

As a consequence we have the following theorem, which extends the result in (2.3) to 
are exponentially rare compared to the total number of polygons in an L-slab. 

the case of self-avoiding polygons in an L-slab. 

Theorem 2.1. If we denote by p:(L) the number of unknotted n-SAPS in an L-slab, then 
the knot probability P(n, L) behaves as 

~ ( n ,  L) = 1 - &)/p,(L) = I - exp (-a(L)n + o(n)) (2.9) 

with a(L)  > 0. 

Proof. We take 

T={-j,-j,k,-j,-j,-k,i,i, j, j ,  j9-i,k?-i,-i,-k,-js-j,i,i,k) 

where i, j ,  k are unit vectors in the coordinate directions, as the K..a pattern. This sequence 
of edges is a knotted arc (see Sumners and Wittington (1988) for the technical definition 
of knotted arc) in a 1-slab, and its presence in a polygon ensures that the polygon will be 
knotted. 

Corollnry 2.2. Almost all polygons in an L-slab in Z3 are knotted. 

3. Numerical methods 

The configurational and topological properties of polygons subject to geometrical consfmints 
can be studied in two ways. First, one can use an efficient algorithm to generate a realization 
of a Markov chain defined on the set of n-gons and then use rejection techniques to select 
the subsequence of polygons in the realization which conform to the constraints. The 
alternative approach is a direct simulation of polygons in the confined environment Both 
these methods have disadvantages. In the first method, one may find that few of the 
polygons in the realization of the Markov chain satisfy the constraints, which may result in 
large uncertainties in any averages computed over the realization. In the second case, the 
problem is more basic: not much is known about Monte Carlo algorithms for polygons or 
walks in wnfined environments. In particular, there do not seem to be algorithms available 
which are ergodic, though we give one example of an efficient and ergodic algorithm for 
polygons (in a I-slab) below. In both methods, the essential requirements are the ergodicity 
of the algorithms and a high efficiency in sampling the relevant state space. 

For most of the work reported here we have used the first approach: generating a 
realization of a Markov chain defined on the set of all n-gons, and using rejection techniques 
to compute averages over polygons satisfying the geomeuical constraints. A modification of 
the 'cut-and-paste' algorithm, introduced by Lal (1969) for the simulation of self-avoiding 
walks in the canonical ensemble, proved to be sufficient for this study. The algorithm 
was studied in detail by Madras and Sokal (1988) who called it the pivot algorithm. A 
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version of the algorithm which proved effective for simulating polygons in the cubic lattice 
was invented by Madras et al (1990). The necessary elementary moves for the algorithm 
include several elements of the octahedral group, the symmetry group of the cubic lattice. 
Two pivots are chosen uniformly on the polygon and a symmetry operation is carried out 
on the shorter of the two segments connecting the pivots, as in Janse van Rensburg and 
Whittington (1991). 

Although the probability that a polygon of length n is knotted approaches unity 
exponentially rapidly with increasing n (theorem 2.1), the knot probability is very small for 
intermediate values of n (up to about 2000 edges). It is therefore a considerable challenge 
to compute reliable values for the knot probabilities in confined spaces, where inefficient 
sampling by the algorithm may hamper reliable estimates. In addition, the knot probability 
depends strongly upon the quality of the solvent (Janse van Rensburg and Whittington 
1990). We may simulate the quality of the solvent by introducing a monomer-monomer 
interaction between vertices in the polygon: if there are c nearest-neighbour contacts in a 
conformation, then we associate a reduced energy -cj3 with the polygon. A Metropolis- 
style implementation of this effect is particularly easy, and works well over a fairly wide 
range of values of 6. (Increasing positive values of 6 correspoild to decreasing solvent 
quality.) 

Knots in polygons can be detected by computing the value of the Alexander polynomial 
A(t) at t = -1 (Volodogskii et 01 1974, Janse van Rensburg and Whittington 1990). If 
1A(-1)1 # 1 then the polygon is a knot. Otherwise we assume that it is the unknot. In fact 
the Alexander polynomial is not a perfect invariant, and is unable to distinguish every knot 
type. For instance the prime knot 811 has the same Alexander polynomial as the composite 
knot 31#61, and 815 has the same Alexander polynomial as 31#72. In this paper we are not 
concerned with distinguishing pairs of knots but only with deciding if a knot is non-trivial, 
and no knot with ten or less crossings has a trivial Alexander polynomial. However, the 
first problem does occur for us at ten crossings, since we only calculate 1A(-1)1 and not 
the full polynomial, and there are two knots with ten crossings which have 1A(-1)1 = 1. 
Previous work (see, for instance, Janse van Rensburg and Whittington (1990)) has shown 
that knots with ten or more crossings are extremely rare, so we are confident that the error 
made in neglecting knots with [A(-l)l = 1 will be insignificant. 

Programming efficiency of the algorithms was maintained by using hash-coding (Knuth 
1973, Horowitz and Sahni 1976). For every state sampled in the Markov chain we computed 
A(-I), the mean square radius of gyration Ri, the spans in the three lattice directions, L,, 
where x = x , y  and z ,  and the number of monomer-monomer contacts c. Rejection 
techniques for computing averages depending on L were implemented by reading the 
subsequence of states with L, Q L and determining weighted averages over the three 
directions x ,  y and z .  This procedure worked well for moderate to large values of L, but 
produced increasingly uncertain data as L was decreased to lower and lower values. We 
were indeed interested in the limiting behaviour of the knot probability as L 1, but could 
not determine these values from our data. Consequently, we developed an algorithm which 
was specifically designed for the case L = 1. 

The algorithm is as follows. Let w be a polygon in a I-slab. Select two distinct vertices 
wi and wj on w with uniform probability. wi and wj divide w into two segments; choose 
the shorter of these. A pivot on this segment is an action of the octahedral group which 
either leaves wi and wj unchanged, or interchanges them. The details are as described in 
Madras et al (1990). One move which can always be attempted (since it interchanges wi 
and wj )  is an inversion (a reflection through the midpoint of the linesegment connecting 
mi and wj). We must consider the effect of this inversion with three possible choices of 
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pivots: (i) and oj are both in the z = 0 plane, (ii) oi and oj are both in the z = 1 plane, 
or (iii) ai is in the z = 0 plane while oj is in the z = 1 plane (or the interchange of this). 
In case (i), any vertex with z-component equal to 1 will be reflected outside the I-slab to 
a vertex with z-component equal to -1. In this case we perform an additional reflection 
of the segment through the plane z = 0; this restores these vertices so that they again have 
z-components equal to 1. This elementary move is obviously reversible: select oi and oj 
again and perform an inversion followed by a plane reflection. We deal with case (ii) in an 
analogous manner. Case (iii) is trivial. We call this move an adapted inversion. For other 
moves (corresponding to other elements of the octahedral group) we may either reject any 
move which takes vertices outside the I-slab or, in some cases, we can use the above trick 
(of a second reflection) to keep the segment in the slab. (Note that this trick does not work 
for L-slabs with L > 1, as one can easily check.) The proof of ergodicity follows the same 
general lines as that of Madras et al(l990). 

This algorithm was coded using the same techniques as set out above. Runs were 
performed under the same conditions as above and the same data were collected. In this 
case, however, rejection techniques were not necessary in analysing the data. 

It is possible to prove the ergodicity of a cut-and-paste type algorithm in a (1, 1)-prism, 
using exactly the arguments mentioned for the I-slab. However, it is not necessary to 
compute the knot probability, since both intuitive and rigorous arguments show that no 
polygon in a (1, 1)-prism can be knotted (see the appendix). 

4. Numerieal results 

In this section we present our numerical results for the incidence of knots in lattice polygons 
on the simple cubic lattice, with the polygons confined in slabs or prisms. We run the 
algorithm for mN attempted pivot transformations, where we determined the knot type of 
N polygons, with each observation separated by m attemped transformations. We choose 
N = 50000, with m = 50 for polygons in a good solvent and m = 200 for polygons in 
a poor solvent to compensate for the decrease in the acceptance rate of the algorithm with 
deteriorating quality of the solvent. 

To present error bars for our estimates it was necessary to calculate the autocorrelation 
times in our MC simulations, using the techniques developed by Madras and Sokal(l988). In 
subsection 4.1 we consider the knottedness of polygons in a good solvent, and we consider 
the effects of a poor solvent in subsection 4.2. 

4.1. The knot probability for polygons in a good solvent 

Polygons confined in a slab 
I t  is reasonable to expect an increase of the knot probability of polygons in an L-slab with 
decreasing L; the confined polygons become smaller in size and are more likely to be 
knotted (Janse van Rensburg and Whittington 1990). However, it is not at all clear whether 
this trend will continue as L tends to 1. In figure 1 we show the knot probability as a 
function of L for polygons of lengths n = 600, 800, 1200 and 1600 confined in slabs of 
different widths. For each fixed n the probability appears to reach a maximum for a finite 
value of L = L(n) and the fraction of knotted polygons decreases with L if L c L(n). 
To confirm the existence of the maxima at L = L(n), we computed the knot probability at 
L = 1 using the I-slab pivot algorithm as set out above. We found a knot probability which 
is almost zero for every n. The presence of a maximum in the probability may reflect the 
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competition between the higher probability for a polygon with smaller radius of gyration 
to be knotted, and the difficulty of forming knots in confined geometries due to the steric 
interactions in the polygon. If the polygon is squeezed along a given axis to a width L,  
then it spreads in the other directions, thus increasing the mean-square radius of gyration 
again, and one expects a decrease in the fraction of knotted configurations. 

P(n. 

0.016 

0.014 

0.012 

0.01 

, L)  
0.008 

0.006 

0.004 

0.002 

0 
0 20 40 60 80 100 

L 

Figure 1. Plot of the h o t  pmbability F k  L )  vmus L for polygons of different sizes n 
(n = 600 (0). n = 800 (O), n = 1200 (A), n = 1600 (0)) confined m slabs of width L. 

Equation (2.3) suggests that the fraction of unknotted conformations in an L-slab, 
Po(n, L),  behaves as 

Po(n, L )  (4.1) 

In figure 2 we plot In Po(n, L )  as a function of n for L = 40,50,60. The straight 
lines shown are 'he fits obtained from a weighted least-square linear regression. This 
linear behaviour supports (4.1); moreover it is clear that the value of a(L) increases as 
L decreases. If we take the error bars to be three standard deviations, and if we discard 
points corresponding to polygons of small size, i.e. with n = 600, we obtain the following 
values for a: a(L = 40) = (1.23 f 0.20) x a(L = 50) = (1.07 f 0.16) x lo-' and 
a(L = 60) = (9.5 f 1.4) x 

In figure 3 we plot the mean-square radius of gyration against L for different values 
of n.  For fixed n,  each curve has a minimum for approximately the same L = L(n) for 
which the knot probability reaches its maximum. This observation supports the idea that 
knottedness in polygons is closely correlated with the 'size' of the conformation: the more 
compact the polygon, the more likely it will be knotted. Moreover, the polygons in the 
1-slab have very large mean-square radii of gyration, and we observe a low knot probability. 
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-0.008 - 
InPo(n, L) 

I -0.01 

-0.012 

-0.014 

-0.016 

-0.018 
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10 

Figure 2. Plot of InPo(n. L),  for a polygon in a slab, against n for three fixed values of L 
( L  = 40 (0). L = 50 (U), L = 60 (A)). The full Lines are least-squares fits. 

I ~~ 

.--..*......*.**......* 

0 20 40 60 80 

L 
3 

Figure 3. Plot of (R?)(L) versus L for different values of n (n = 600 (0). n = 800 (0). n = 
1200 (A). n = 1600 (0)). 
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Polygons confined in a prism 
We performed the same kind of analysis for polygons in an (L ,  L)-prism. In this case 
the polygon fits into the prism if L. and Lb are both less than L, with a = x ,  b = y, 
or a = x ,  b = z .  or a = y ,  b = z .  Weighted averages in three directions were taken to 
compute means over the ensemble of polygons by rejection techniques. 

In figure 4 we plot the knot probability as a function of L for different values of n. We 
see exactly the same kind of behaviour found in the case of the slab. The only difference 
is in the values of the maxima, which are considerably higher than in the slab case; in a 
prism a polygon is more confined, and therefore more compact, and we expect a higher 
probability of being knotted. 

0 
0 20 40 60 80 100 

L 

Figure 4. Plot of the knot probability P(n.  L )  versus L for polygons of different sizes n 
(n = 600(0). n = 800(0). n = 1200 (A). n = 1600 (0)) confined in prisms of width L x L .  

In figure 5 we plot InPo(n, L )  as a function of n for three different fixed values 
of L ( L  = 40,50,60), and we also give the curves obtained from a weighted linear 
regression. There is a clear dependence of o on L:  o(L = 40) = (2.25 zk 0.30) x lo-', 
LY(L = 50) = (1.70 f 0.15) x The mean- 
square radius of gyration exhibits a minimum at approximately the value of L where the 
h o t  probability has a maximum. 

and u(L = 60) = (1.29 5~ 0.15) x 

4.2. Incidence of knots in a poor solvent 

Since the effect of a poor solvent is to increase the knot probability, in this situation we 
expect all the features observed in the previous section, but with higher knot probability. 
We choose for the parketer ,9 the value p = 0.26 since it is known (Janse van Rensburg 
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-0.035 

-0.04 
600 800 1000 1200 1400 1600 1800 

n 

Figure 5. Plot of In Po(", L), for a polygon in a prism, against n for three k e d  values 
(L = 40 (O), L = 50 (0). L = 60 (A)). The full lines are least-squares fits. 

Of L 

40 60 80 20 
0 

0 

L 
I 

Figure 6. Plot of the knot probability Pp(n. L) versus L for polygons of different sizes n 
(n = 400 (0). n = 600 (0). n = 800 (A), n = lo00 (0)) confined in slabs of width L. 
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et al 1992) that this corresponds to a very poor solvent model for polygons in the simple 
cubic lattice. We performed all our analysis keeping b fixed at this value. 

Polygons in a slab 
In figure 6 we show the dependence of the knot probability on L for polygons of different 
sizes (n = 400, 600, 800, 1000) confined in slabs of different widths L. We considered 
polygons shorter than in the case of a good solvent model since the performance of the 
pivot algorithm is not as good in this regime as it is in a good solvent model. In particular, 
the autocorrelation times of the algorithm increase significantly with decreasing solvent 
quality. To compensate for this, we increased the number of attempted pivots between 
taking samples in the implementation of the algorithm. The general behaviour of the knot 
probability is the same as in the good solvent case, except that the values are higher: more 
polygons are knotted. This is to be expected, since the polygons are more compact in this 
regime, and we have seen that this correlates with a lager knot probability. 

-0.14 I ~ ~~~ 

300 400 500 600 700 800 900 1000 1100 

n 

Figure 7. Plot of In P j ( n ,  L) ,  for a polygon in a slab, against n for three fixed values of L 
( L  = 30 (0). L = 40 (0). L = 50 (A)). The full lines are least-squares fits. 

It is reasonable to assume for the knot probability of a polygon in a poor solvent a 
behaviour analogous to that of (4.1). where a = a(L, p )  now also depends on the quality 
of the solvent. In figure 7 we plot In Pa"@, L) as a function of n for L = 30,40,50, and 
we include the lines obtained from a weighted least-squares linear regression. If we assume 
error bars which are three times the standard deviation, we obtain the following values 
for a: u(L = 30) = (1.475 &O.OSO) x and 
a(L = 50) = (1.265 4 0.030) x 10"'. Comparing these values with the ones obtained for 
slabs of the same L, in the good solvent regime, we clearly see the dependence of u(L) on 
the quality of the solvent, Similar trends were observed for polygons on the FCC lattice by 

a(L = 40) = (1.340&0.033) x 
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Janse van Rensburg and Whittington (1990). The mean-square radius of gyration behaves 
similarly to the good solvent case; here the more compact conformations result in smaller 
values of the meansquare radius of gyration. 

Polygons in a prism 
The same analysis was carried out for polygons in an (L, L)-prism. Again, the behaviour 
is similar to that of polygons in a prism in a good solvent regime, but with higher values 
for the knot probability. 

We have analysed the n dependence of the knot probability at fixed values of L by 
assuming the functional form of (4.1), and we have obtained the following estimates of (Y 

from a weighted least-squares linear regression: a(L = 30) = (1.994 f 0.078) x 
a(L = 40) = (1.618 f 0.044) x lo4 and (Y(L = 50) = (1.431 f 0.033) x There 
is a clear dependence on L and the B dependence can be seen hy comparing with the 
values obtained for polygons in good solvent. The mean-square radius of gyration exhibits 
a similar minimum as seen in the good solvent. This minimum corresponds to the value of 
L at which we have a maximum in the knot probability. 
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5. Discussion 

We have shown rigorously that, for polygons confined to lie in a slab in Z3, the knot 
probability goes to unity exponentially rapidly as the size of the polygon increases. This 
is the same behaviour as for polygons in Z3. However, ow numerical results show that 
geometrical constraints have a strong effect on the numerical values of the knot probability 
and that, as the width of the slab decreases, the knot probability goes through a maximum. 
Similar results are found numerically for polygons in a prism. 

In addition, the quality of the solvent can have a large effect for polygons confined 
to slabs or prisms, just as for polygons in 9. As the solvent becomes worse, the knot 
probability increases. 

Of course, there are many interesting open questions. Can we say anything rigorously 
about the L-dependence of a(L)? Is it possible to provide any rigorous results on the effect 
of solvent quality? In this work we have considered only two types of geometrical constraint. 
Certainly others are of interest and, in particular, it would be useful to have information on 
less regular constraints. In addition, although we are beginning to understand something 
about knotting in ring polymers, almost nothing is known about linking. This is an important 
area which has scarcely been addressed. 
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Appendix 

Ws snow that any polygon in a (1, 1)-prism is unknotted by proving that one can always 
reduce the length of the polygon, without changing its knot type, until we are left with 
a polygon of length four edges, and which is the unknot. The contruction proceeds by 
finding three edges which are arranged in a u-conformation; we replace this by a single 
edge connecting the two endpoints. Trivially, this construction is an ambient isotopy if we 
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think of the polygon as embedded in R'. Suppose that the axis of the prism is pmallel 
to the x-axis, and find the lexicographic top edge of the polygon. It is easy to see that 
this edge must be perpendicular to the x-axis; suppose without loss of generality that it 
points in the y direction. Let t be the top vertex (with x-component C), and let i ,  j and 
k be the three canonical unit vectors. Then we may denote ( t ,  - j )  as the top edge, with 
endpoints t and t - j in the plane x = C. The edges incident with the top edge are either 
parallel or perpendicular to each other. If they are parallel, then they must be of the form 
( t ,  -k), and (t - j ,  -k)  or ( t ,  - i )  and (t  - j ,  - i ) ,  respectively. In the first case we can 
replace the top edge and its neighbours by the single edge (t - k, - j), and in the second 
case by (t - i, - j ) ,  reducing the length of the polygon by two without changing its h o t  
type. On the other hand, if the neighbouring edges are perpendicular, then they are (t .  -i) 
and (t - j ,  -k), or (t .  4) and (t - j ,  - i ) .  Without loss of generality, consider only the 
first of these. We argue now by exhausting all the possible cases. Incident with the second 
edge is either (t - j - k, j )  or (t  - j - k, - i ) .  In the first case we find the sequence 
(t .  - j ) ,  (t - j ,  -k), (t - j - k, j), which we replace by (t .  -k), reducing the length of 
the polygon by 2 without changing its knot type. In the second case we we have (t .  - i ) ,  
( t ,  - j ) ,  (t - j ,  -k), (t - j - k, 4). Observe now that the vertex ( t  - i - j )  can only he 
occupied by a vertex of the polygon if either the edge (t - i - j ,  j )  or (t - i - j .  -k) is 
in the polygon (this follows, since every vertex in the prism has degree 4, and every vertex 
in the polygon has degree 2). But then we find one of the following sequences of edges: 
(t  - i - j .  j ) ,  ( t ,  - i ) .  ( t ,  - j ) ,  or (t  - i - j ,  -k), (t - j - k, -i), (t  - j ,  -k). Both these 
are u-conformations, and we can replace them by a single edge each. This exhausts all the 
possibilities. Continue this construction; eventually, we are left with a polygon consisting 
of only four edges, which is the unlmot. Since we never changed the knot type of the 
polygon in this construction, the original polygon must be an u h o t .  
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